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Post-buckled precompressed (PBP) piezoelectric elements have recently been used to enable a

new class of actuators that are able to provide far higher de°ections compared to the traditional

bimorph piezoelectric actuators while maintaining full force and moment generating cap-

abilities. Past research has proven that PBP actuators are capable of generating de°ections
three times higher than conventional bimorph actuators. In this paper, this work has been

extended to the dynamic response realm and the performance of PBP actuators is investigated

under various axial loads, at various actuation frequencies. Both analytical and ¯nite element

models have been developed in order to evaluate the performance of the actuator regarding the
natural frequency shift under increased axial loads. Experimental veri¯cation has shown that

the overall damping ratio of the structure is a function of the axial forces. Values derived from

experiments have been used in the Finite Element model to predict the displacement output,

phase angle shifting and end rotation. Numerical and analytical results correlate very well with
the experiments and thus give credit to the formulation presented in this work.
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Nomenclature

A=Normalized amplitude, �
B=Distributed coupling sti®ness, N

b=Actuator width, m

c=Distributed damping coe±cient, Ns/m2

D=Distributed bending sti®ness, Nm

d=Spring displacement, m

d31 =Piezoelectric charge constant, V/m

E=Sti®ness, or electric ¯eld, N/m2, V/m

F=Force, N

f=Forcing frequency, Hz

G=Shear stress, N/m2

GF=Gauge Factor, �
t=Structure thickness, m

I=Moment of inertia, m4

K=Sti®ness, N/m

k=Spring sti®ness, N/m

L=Length of beam, m

M=Mass or moment, kg, Nm

m=Distributed mass, kg/m2

R=Resistance, �

r=Radius of curvature, m

t=Time, s

u=Displacement, m

V=Voltage, V

v=Vertical displacement, m

W=Work, Nm

x=Spacial coordinate, m

z=Spacial coordinate, m

Greek Symbols

�=Loss coe±cient, N/m

�=Di®erential, �
�=Strain, m/m

�=Damping ratio, �
�=End rotation, deg

�=Poisson ratio, �
�=Density, kg/m3

�=Curvature, 1/m

 =Shape function, �
!=Forcing frequency, rad/s

G. Giannopoulos et al.
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Subscripts and superscripts

�=Equivalent

a=Axial

act=Actuator

amp=Amplitude

b=Bond

dc=DC o®set

l=Laminate

n=Natural

p=Piezoelectric

s=Substrate

SE=Strain energy

0= Initial condition

Abbreviations

DAQ=Data Acquisition Device

FE=Finite Element

PBP=Post-Buckled Precompressed

SDOF=Single degree of freedom

1. Introduction

Piezoelectric actuators su®er from inherent incapability to deliver high mechanical

de°ection output combined with high moment generation. High de°ection can be

achieved at the expense of moment generation and vice versa. There exists a linear

relationship that, until recently has de¯ned the operational envelope of such struc-

tures. For actuation applications with high de°ection output necessity ampli¯cation

mechanisms were conceived tailored towards the application in miniature UAVs.

The work of Barrett et al.1�4 has shown how actuators can be embedded in small

control surfaces, such that they are capable of providing a meaningful moment/

displacement combination adequate for °ight control. In Fig. 1, the moment/dis-

placement trade o® is clearly depicted providing thus a clear indication of the lim-

itations of conventionally con¯gured, linear adaptive actuators.

The problems that aeromechanicians have to face in order to use conventional,

linear piezoelectric actuators for °ight control are clearly depicted in Fig. 1. In

general, the amount of moment that can be obtained at the maximum displacement

is limited and thus the actuator cannot cope with overdesign loads. Although a raft

of actuator ampli¯cation mechanisms are available for conventional piezoelectric

actuators, all they generally do is trade force for de°ection. Accordingly, the work per

unit mass and volume simply goes down as these techniques are employed.

Dynamic Performance of Post-Buckled Precompressed Piezoelectric Actuator Elements
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Additionally, it is obvious that half of the available mechanical energy of the

actuator goes essentially unused. Thus there is large room for improving the e±-

ciency of these actuators.

Towards this direction the work of Lesieutre6 was instrumental in demonstrating

clearly that an actuator can have higher coupling coe±cient (or transfer e±ciency)

than its active material. In order to achieve this target, a new class of mechanics was

introduced, called post-buckled precompresed (PBP) actuators. Bender piezoelectric

elements could exhibit much higher displacement generation with no moment reduc-

tion through the application of an additional axial force. This axial force essentially

ampli¯ed any curvature that was originally introduced by the piezoelectric elements

thereby magnifying the peak-to-peak de°ection. This opened a new area of structural

mechanics that although unintentional, could be used for °ight control of airborne

structures. At axial forces close to the perfect-column buckling load, snap-through

buckling could occur which was investigated by Giannopoulos et al.7,8 Piezoelectric

bender actuators were examined experimentally and analytically in order to predict

this highly non-linear behavior. Although snap-through mechanics were introduced to

further increase the actuation capabilities of piezoelectric structures with axial forces,

the highly nonlinear behavior of these structures rendered them inconvenient for

integration into structures that were driven by controller circuits. Maurini et al.

demonstrated numerically that using a two-parameter actuation approach makes it is

possible to get quasi-static transitions between the two specular equilibria of the

buckled beam, without any instability phenomenon (like snap-through buckling

behavior).9 This required the simultaneous actuation of the axial force and the

actuation voltage. Formany control mechanisms, however, a quasi static displacement

is required for a constant axial force without the occurrence of instabilities.

In the domain of °ight control based on PBP actuators the work that exists in

literature is limited. In this context the work of Vos et al.,10,11 De Breuker et al.12

E=

Fig. 1. Typical pitching moment versus de°ection design space relationship for conventional, linear

Micro°ex piezoelectric actuators driving a 5 cm semispan, 2 cm chord stabilator.5

G. Giannopoulos et al.
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and Barrett et al.13,14 has been instrumental. They clearly demonstrated that non-

linear mechanics can be applied successfully in airborne structures despite their

inherent di±culty of combining the nonlinear mechanics with electronics and con-

trollers. As is shown in the aforementioned works, PBP elements have been used for

the °ight control of UAVs, munitions and missiles.

Even though the simultaneous increase in moment and displacement output

through the application of axial forces has worked well in quasi-static performance, it

comes at the cost of reduced natural frequency. Obviously, the application of PBP

elements for °ight control imposes certain requirements on their dynamic behavior.

The decrease of the natural frequencies and the corresponding increase in the overall

damping ratio have been clearly depicted in the work of Groen et al.15 Clearly the

reduction in natural frequencies and damping increase have to be quanti¯ed in order

to tailor such elements in case dynamic performance is of interest. Apart from the

previously mentioned work of Groen et al. the authors have not been able to ¯nd any

other similar contribution in the literature.

The present work aims to present a complete analysis of the dynamic performance

of PBP elements. An analytical as well as a ¯nite element (FE) model have been

developed in order to accurately grasp the mechanics of these structures. The

validity of these models has been backed-up by experimental results. It has been

clearly demonstrated that indeed the precompression exerted on the PBP actuators

alters signi¯cantly their behavior in the dynamic domain. It has been revealed that

both the damping ratio as well as the natural frequencies of the actuator shift with

increased compressive force.

2. Analytic Modeling using Virtual Work

Figure 2 shows a sketch of an example axially compressed beam in simply supported

con¯guration. In this con¯guration the element is subjected to the end ¯xity con-

ditions of:  ð0Þ ¼  ðLÞ ¼ 0, where L is the length of the beam element and  is a

shape function. The dimensions of this element are presented in Table 1, while the

properties of the materials that constitute it are shown in Table 2.

The bimorph piezoelectric actuator element can be dynamically modeled as an

oscillating Euler beam with an in¯nite amount of degrees of freedom. By imposing a

FaPBP element

b
L

Fig. 2. Schematic representation of axially compressed PBP actuator element in simply supported

con¯guration.

Dynamic Performance of Post-Buckled Precompressed Piezoelectric Actuator Elements
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mode shape these in¯nite degrees of freedom are connected and the problem can be

reduced to a single degree of freedom (SDOF) system of the form16:

M �v::þ C � _v þK �v ¼ F �ðtÞ: ð2:1Þ
A shape function  ðxÞ multiplied by an amplitude zðtÞ is used to prescribe the

shape of the beam during the oscillation. In the present work a sinusoidal shape

function has been used with  ðxÞ ¼ sin x and 0 < x < 	. Accordingly, vðx; tÞ ¼
 ðxÞzðtÞ. By using the principle of virtual work16 a virtual displacement, �zðtÞ is

imposed on the beam structure resulting in an amount of work, �W , done on the

structure. Assuming an in¯nitesimal amount of virtual displacement (�zðtÞ ! 0)

yields the following:

�W ¼ �F � �zðtÞ ¼ 0: ð2:2Þ
The virtual work done by the distributed mass, m, is represented by:

�WI ¼ � m

Z L

0

 2ðxÞdx
� �

z
::ðtÞ�zðtÞ; ð2:3Þ

Where the distributed mass is expressed as:

m ¼ ð2�ptp þ 2�b tb þ �stsÞb: ð2:4Þ

The work that is performed by the damping force is expressed by the following

equation:

�WDE ¼ �c

Z L

0

 2ðxÞdx
� �

_zðtÞ�zðtÞ: ð2:5Þ

The internal work is done by a moment, M , acting through a virtual curvature,

��ðxÞ : M ¼ EIv 00ðx; tÞ�v 00ðx; tÞ, or in terms of laminate sti®ness, M ¼ Dlbv
00ðx; tÞ

�v 00ðx; tÞ, where Dl is the distributed bending sti®ness of the laminate. Using

Table 1. Dimensions and sti®ness coe±cients of PBP element.

tp ts tb L b Bact Dl E3 max


m 
m 
m mm mm kN Nm V/mm

267 76 102 230 11.2 10.5 3.82 660

Table 2. Material properties of evaluated PBP element.

Piezoelectric Substrate Bond Line

Material PZT 5A Aluminum 1100-H18 Hysol 9412

Density, � (kg/m3) 7,800 2,700 2,400

Sti®ness, E, (GPa) 61 70 1
Poisson's ratio, � (�) 0.31 0.3 0.3

G. Giannopoulos et al.
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classical laminated plate theory (CLPT) this coe±cients can be expanded as

follows18:

Dl ¼ Es

1

1� � 2
s

t3s
12

þ Ep

1

1� � 2
p

tp
ðts þ 2tbÞ2

2
þ ðts þ 2tbÞt2p þ

2

3
t3p

� �
: ð2:6Þ

Substitution of the shape function and integration over the entire beam yields the

virtual strain energy:

�WSE ¼ �
Z L

0

Dlbð 00ðxÞÞ2dx
� �

zðtÞ�zðtÞ: ð2:7Þ

Work done by the normal force, Fa, can be expressed as:

�WN ¼
Z L

0

Fað 0ðxÞÞ2dx
� �

zðtÞ�zðtÞ: ð2:8Þ

The actuation of the bimorph PZT element can be modeled by a distributed

moment, MðtÞ ¼ Bactd31E3ðtÞb, where Bact is the distributed coupling sti®ness of

the actuator elements, d31 is a piezoelectric charge content, and E3 is the electric

¯eld strength. For the bimorph actuator element considered here, this coe±cient

can be calculated using the method laid out in Jones18:

Bact ¼ Ep

1þ �p
1� � 2

p

ðtstp þ 2tbtp þ t2pÞ: ð2:9Þ

Analogous to the internal work, this distributed moment induces a rotation, ��ðxÞ,
which leads to:

�Wact ¼ Bactd31E3ðtÞb
Z L

0

 00ðxÞdx
� �

�zðtÞ: ð2:10Þ

By adding Eq. (2.3) through Eq. (2.10) the total virtual work can be found:

�W ¼ �WI þ �WDE þ �WSE þ �WN þ �Wact: ð2:11Þ
Substituting the expressions for each of the terms in Eq. (2.11) and letting

�zðtÞ ! 0, results in the equation of motion for this system:

m

Z L

0

 2ðxÞdx
� �

z
::þ

Z L

0

c 2ðxÞdx
� �

_z þ
Z L

0

Dlbð 00ðxÞÞ2 � Fað 0ðxÞÞ2dx
� �

z

¼ Bactd31E3ðtÞb
Z L

0

 00ðxÞdx
� �

: ð2:12Þ

Equation (2.12) is of the form of Eq. (2.1).

When a harmonic forcing function with a forcing frequency of ! is chosen for the

electric ¯eld strength (i.e. E3ðtÞ ¼ E3 sinð!tÞ), the following normalized response can

be found:

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !

!n

� �2
� �

2

þ 2� !
!n

� �h i
2

s : ð2:13Þ

Dynamic Performance of Post-Buckled Precompressed Piezoelectric Actuator Elements
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The natural frequency of the structure is calculated by the following equation:

!n ¼
ffiffiffiffiffiffi
K

M

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRL

0
ðDlbð 00ðxÞÞ2 � Fað 0ðxÞÞ2Þdx

m
RL

0
 2ðxÞdx

vuut : ð2:14Þ

In the analytical model, structural damping is considered. Energy is dissipated

internally within the material proportional to the square of the amplitude of

vibration.16,17 The damping ratio can be obtained from the following equation:

� ¼ �

2	k

!n

!
; ð2:15Þ

where � is the loss coe±cient (constant). The use of the loss coe±cient has been

decided due to the fact that the damping ratio of the structure (as it will be shown

later from the experimental results) is not constant.

3. Finite Element Analysis

3.1. Model setup and assumptions

In addition to the analytical model a ¯nite element analysis has also been developed.

The aim of this model is to investigate the response of piezoelectric structures in

terms of displacements and frequency shifting due to the compressive loading and to

compare with analytical models and experimental results. The added value of a ¯nite

element model is that it can grasp more phenomena such as various boundary

conditions combined with nontrivial (or even optimal) geometries. In addition, the

two operating modes for the piezoelectric layers (open and closed circuit) can be

evaluated. In open circuit conditions the piezoelectric layer is allowed to develop a

voltage between its two faces and thus store the electric energy that is developed due

to its elastic deformation. In that case one face of the piezoelectric layer is considered

to be grounded (zero voltage) while the other is free. Thus a voltage di®erence

between the two faces can be developed as a result of the inherent capability of the

piezoelectric layer to transform part of the elastic energy to electric energy. In fact it

operates as a capacitor. In open circuit conditions both faces of the piezoelectric layer

are grounded (zero voltage). Thus no voltage di®erence between the two faces can be

developed and obviously no electric energy can be stored in the piezoelectric layer. In

that case the capability of the piezoelectric layer to transform part of the elastic

energy to electric energy is canceled and the piezoelectric layer performs as a normal

structural material. It will be shown that proper analytical set-up of the model can

yield very accurate results.

The model has been developed in ANSYS (Academic License). The ¯nite element

model is built using various types of eight-node ¯nite elements. Although a model

consisting of plate elements would seem more adequate for such analysis, in fact it is

not applicable. The main reason for using brick elements is that due to the existence

of piezoelectric material, the interfaces between the various material layers is

G. Giannopoulos et al.
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required for the application of the boundary electrical conditions. This choice can be

potentially dangerous for the analysis due to the large aspect ratio of the structures

(L=tact > 100) that can lead to numerical instabilities which manifest themselves in

erroneous results. In Fig. 4, the meshed geometry of the ¯nite element model is

shown.

The representation of the di®erent materials of the piezoelectric structure requires

various multiphysics models that are not included in all solid elements. Two types of

eight-node solid elements had to be used. The SOLID5 (ANSYS nomenclature) is a

piezoelectric ¯nite element that supports nonlinear analysis, while SOLID45 is more

adapted to conventional structural materials without multiphysics modeling

requirements. The FE model parameters are shown in Table 3. The aluminum layer

is divided into two layers through the thickness in order to facilitate the application

of the boundary conditions in the middle layer of the structure. These are uxð0; y;
tact=2Þ ¼ uyð0; y; tact=2Þ ¼ uzð0; y; tact=2Þ ¼ 0, uyðL; y; tact=2Þ ¼ uzðL; y; tact=2Þ ¼ 0. The

beam is free to displace at x-direction at the end of the beam (uxðL; y; tact=2Þ 6¼ 0).

The material properties introduced are the ones of the PZT 5A material.

However, there are two important modi¯cations that have taken place in order to

adapt to the real structural properties. The structure that is evaluated in this work

has an active length of 218mm (230mm with the end supports) with the end

supports made of di®erent material (Hysol 9412 epoxy with style #120 ¯berglass

cloth at 254
m thickness epoxy). For the sake of accuracy this has been included in

the FE model. The second modi¯cation is related to the °exural rigidity of the

structure. Due to the fact that the length of the actuator signi¯cantly exceeds the

maximum length of the available PZT 5A plates (72� 72mm) three pieces of the

piezoelectric material had to be positioned next to each other on the aluminum

substrate. As a consequence of the resulting seams the structure had reduced

overall °exural rigidity. In order to appreciate the e®ect of this discontinuity of the

piezoelectric elements, a three-point bend test took place in order to quantify the

amount of the reduction of the °exural rigidity. The test revealed that the mean

°exural rigidity (EI) has been reduced from the theoretical value of 0.0296Nm2 to

0.022Nm2 (the theoretical value has been calculated using CLPT equations) and

thus there is a reduction of about 26% which cannot be neglected. The seams at the

various points could not be modeled at the local level and thus a global adjustment

had to take place in order for the model to have a rigidity value that corresponded

to the actual specimen.

Table 3. Statistics of the FE model.

Material Element type No. of elements

Aluminum SOLID45 5,520

Adhesive SOLID45 5,520
Piezoelectric SOLID5 5,520

Dynamic Performance of Post-Buckled Precompressed Piezoelectric Actuator Elements
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The procedure that was followed was simulating bending test using a pressure of

1N/mm2. The modulus of elasticity of all materials has been reduced accordingly in

order to have a °exural rigidity equal to 0.022Nm2. Each of the materials were

assumed to be isotropic (although it had to be introduced as anisotropic for the

piezoelectric material due to ANSYS requirements with E11 ¼ E22 ¼ E33 and

G12 ¼ G23 ¼ G13). The resulting properties used for the model are depicted in

Table 4.

3.2. Prestress static analysis

In order to introduce prestress e®ects in the subsequent harmonic analysis and

evaluate the e®ect of compressive forces into the dynamic response of the structure, a

prestress static analysis has to take place. The prestress analysis for this model is

taking place for four di®erent compressive force values in order to be consistent with

the experimental analysis. These forces are 0.8, 1.3, 1.8 and 2.3N. Nonlinear e®ects

(stress-sti®ening) cannot be taken into account and this is due to the inherent

incapability of ANSYS to perform a prestress calculation including nonlinear e®ects

that can be later used for a prestressed harmonic analysis. This can be a major

drawback that may reduce signi¯cantly the e®ect of the compressive forces over the

subsequent harmonic analysis in case the analysis is entering the nonlinear area close

to the critical buckling load. The critical buckling load for the present structure

implementing the Euler formula is calculated at 4.1N which permits the adoption of

this assumption. The electrical boundary conditions for the piezoelectric layers

are set to open circuit throughout the static analysis, thus only V ðx; y; tpÞ ¼
V ðx; y; tact � tpÞ ¼ 0. In closed circuit conditions (all piezoelectric faces are put to

zero) the apparent rigidity of the structure is lower. However, the open circuit

conditions seem to be more comparable to the actual experiment since these elements

are never grounded during the experiment.

3.3. Harmonic analysis

A harmonic analysis was conducted by employing a sinusoidal forcing function of

þ=�40V from 0 through 30Hz. Due to the extensive computational time that is

Table 4. Modi¯ed material properties for reduced °exural rigidity used in Finite Element model.

Piezoelectric Substrate Bond line End supports

Elastic properties

Material PZT 5A Alu 1100-H18 Hysol 9412 Glass Fiber

Density, � (kg/m3) 7,800 2,700 2,400 1,600
Sti®ness, E, (GPa) 41.5 47.6 0.68 50

Poisson's ratio, � (�) 0.31 0.3 0.3 0.3

Piezoelectric properties

d31 (m/V) �320� 10�12

d32 (m/V) �320� 10�12

d33 (m/V) �670� 10�12

G. Giannopoulos et al.
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required it has been judged that performing a more detailed analysis with many time

steps is more interesting instead of performing a less detailed analysis in a wider

frequency domain. This frequency domain is divided into 150 equally spaced sub-

steps, a parameter that is de¯ned by the user. Obviously, the more substeps, the

higher the resolution of the frequency domain and thus the peak amplitude at the

resonance frequency is better depicted, especially for low damping values. The results

that are obtained are depicted in Bode plots with the amplitude being normalized

with respect to the displacement found at the lowest excitation frequency, which

corresponds to the ¯rst of the 150 substeps that the frequency domain (0�30 Hz) is

divided. This corresponds to a frequency of 0.2Hz, thus a quasi-static excitation. The

Bode plots amplitude is expressed by the following equation:

A ¼ 20 � log10ðz=z0Þ: ð3:1Þ
All displacement values are measured at the point with coordinates (L=2; b=2; tact).

The damping value that is used is based on the experimental results and it is pre-

sented in Table 5. Additionally, a modal analysis was carried out in order to depict

more accurately the frequency shift due to the axial loading. The harmonic analysis

gives an estimation of the peak frequency (it depends on the resolution of the

scanning of the frequency domain) while the modal analysis calculates exactly the

natural frequencies of the structure. However, in the present analysis, due to

the relatively large number of substeps, the harmonic analysis peak frequency and

modal analysis results correlate very well.

4. Actuator Design and Experimental Setup

To examine the dynamic behavior of a typical PBP actuator a test setup was built.

As test specimen a 230mm long and 11.2mm wide PBP actuator was constructed.

The PBP actuator was made from an aluminum substrate with three PZT elements

placed next to each other on each side of the substrate. To transfer bending stresses,

style #120 glass ¯bercloth was applied on top of the seams between the elements as

well as to the actuator end supports. Hysol 9412 was used as bonding and for the

¯berglass matrix. To measure strain due to bending during the experiment, strain

gauges were applied to the middle elements on either side of the actuator to measure

the di®erential strain during excitation. The strain gauges were connected in a full

Wheatstone bridge con¯guration. Figure 3 shows a schematic overview of the

Table 5. Damping and axial forces used in the
numerical analyses.

Analysis Damping Axial force (N)

1 0.05 0.8

2 0.07 1.3

3 0.10 1.8
4 0.13 2.3

Dynamic Performance of Post-Buckled Precompressed Piezoelectric Actuator Elements
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actuator layup and dimensions and Table 2 shows the material properties of the

actuator.

The test specimen was placed in an Instron 3345 test machine, where both sides of

the actuator were pinned, as shown in Fig. 5. On the bottom side the test specimen

was connected to a slide with a compression spring. In this way the axial force on the

test specimen could be set by adjusting the clamp height of the tensile test machine.

The force transducer on the Instron provided a 1mN accurate force measurement of

the axial force applied. The maximum axial force, Fa, applied to the specimen is

given by:

Fa ¼ kd: ð4:1Þ

5. Data Acquisition and Processing

The data acquisition and actuator control was done with a data acquisition device

(DAQ). This device was controlled by the software package LabVIEW of National

Instruments. To control the actuator, a sinusoidal control signal, V ðtÞ, was used. The
low-voltage control signal from the DAQ was ampli¯ed and supplied the actuator

1000Ω strain gauges

b=11.2mm

PZT 5A, thickness: t  = 267µm p
AISI 1010 full hard aluminum, thickness: t  = 76µm s
Hysol 9412 bond, thickness: t  = 102µm 

b

72mm
tact= 814 µm

glass fiber end tab

6mm

L=230mm

Fig. 3. Schematic overview of the PBP actuator and dimensions.

Fig. 4. Finite element discretization of the PBP actuator.

G. Giannopoulos et al.
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with a signal of the form:

V ðtÞ ¼ Vdc þ Vampsinð2	ftÞ; ð5:1Þ
where the Vdc is a DC o®set voltage, Vamp the amplitude of the signal and f the

frequency in Hz. The actuator supply signal was given a DC o®set voltage, Vdc such

that the actuator showed symmetrical bending around the uncurved geometry. The

necessary voltage to obtain this symmetry was 5V for any axial force and any Vamp.

This was determined by measuring the axial force. Since the axial force is time

dependent of the vertical displacement of the actuator tip, a straight position of the

actuator led to the maximum axial force. The measurements were taken at various

axial force levels. The axial force levels, Fa chosen for the experiment were 0.8, 1.3,

1.8, and 2.3N. The maximum applied axial force was set to be 2.3N, because when

applying axial loads higher than 2.6N the actuator began to exhibit snap-through

behavior.

The resulting dynamic response of the actuator was measured by the DAQ by

means of the di®erential voltage �V from the Wheatstone bridge. The DAQ also

measured the current supplied to the actuator. The acquired data was processed in

MATLAB with a least square method to determine the amplitude of the sinusoidal

actuator response and the amplitude of the sinusoidal current signal. The strain at

the midpoint of the actuator was calculated by relating the di®erential voltage�V to

the di®erential resistance in a strain gauge, �R:

Vwb þ�V

2Vwb

¼ Rsg þ�R

2Rsg

; ð5:2Þ

where Vwb is the voltage over the Wheatstone bridge, 5V and Rsg is the resistance of

the strain gauge, which was 1,000�. Knowing the gauge factor, GF, was 2.09, the

strain was calculated according to19:

� ¼ �R

GFRsg

: ð5:3Þ

Instron clamp Instron clamp

pinned pinned slide
b = 11.2mm

d

k
L = 230mm

t    = 0.81mmact

Fig. 5. Front view photo and schematic side view of the setup.
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To calculate the end rotation of the actuator, only ¯rst mode circular bending was

assumed. Furthermore, it was assumed that the neutral line of the actuator coincided

with the central line of the actuator, so that the strain on each side of the actuator

was constant and opposite. From Fig. 6, the following relation can be derived

assuming a circular arc shape function:

� rþ tact
2

� �
¼ Lþ�L

2
; ð5:4Þ

where r is the circular arc radius and � the end rotation. Knowing that the strain is

de¯ned as the di®erential length�L divided by the total length L and that r ¼ L=2�,

the end rotation is calculated according to:

� ¼ �L

tact
¼ L

tact
�: ð5:5Þ

The end rotation in the measurements was corrected for an o®set in strain. This

o®set was introduced in the strain gauges by the axial force and by imperfections in

the actuator. Calibration at low frequency with laser re°ection techniques, showed

the end rotation calculated from the measured strain to correspond with the cali-

bration within 10%.

6. Results and Discussion

In order to have a clear overview of the response of the structure under various axial

loads, four di®erent compressive forces have been evaluated (0.8, 1.3, 1.8, and 2.3N)

while a wide range of frequencies has been scanned. The electric input has an

amplitude of þ=�40V. In any case the frequency range of interest is up to 30Hz

since critical phenomena such as resonance are taking place well below this

frequency. Clearly the validation of the analytical and numerical models

depends heavily on their performance concerning the produced displacement by the

piezoelectric actuator. These results for the four compressive forces are shown in

Figs. 7(a)�7(d). It is obvious that numerical and analytical methods results agree

very well with experimental results in terms of the predicted natural frequency.

Additionally, both numerical and analytical models grasp very well the normalized

amplitude over the entire range of frequencies providing thus concrete evidence for

their validity. Another conclusion from these plots is that although in absolute

values, the displacement produced by the actuator is increasing with the increase of

the axial load, for the normalized displacement this trend is inverted. The normalized

θ

r

t Fact
a

Fig. 6. Schematic side view of a circular arc bent actuator.
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displacement can be considered as an indication of the capacity of the actuator to

amplify the quasi static response when operating in dynamic mode. This capability is

decreased as the compressive force becomes higher due to the increase of the overall

damping ratio of the structure. In order to clearly depict this trend, in Table 6 the

natural frequencies, the damping values and the bode plot amplitude are presented

for all three methods. It should be noted that in the regions of greatest interest to

control systems engineers, the agreement is highest. Beyond 3� !n, the control

system phase lag is typically so severe that control system design engineers generally

do not count on commanding de°ections in that region. Further, the experimental

techniques used lead to reduced ¯delity at higher frequencies.

In Table 6 the damping value for the numerical analysis is not calculated but it is

in fact the input value that has been used. Clearly, the calculation of the overall

damping of the structure cannot be achieved by the numerical models. There are

various parameters (hinge friction, material hysteresis, piezoelectric domain

switching, Coulomb damping etc.) that cannot be accurately evaluated and thus

introduced in the numerical model. Local models with high detail could grasp these

mechanics and then with the application of hierarchical modeling principles these

(a) (b)

(c) (d)

Fig. 7. Amplitude bode plot for (a) Fa ¼ 0:8N, (b) Fa ¼ 1:3N, (c) Fa ¼ 1:8N and (d) Fa ¼ 2:3N.
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could have been introduced in the global model. However, this endeavor exceeds the

scope of the present work.

Similar conclusions can be extracted from the end rotation bode plots shown in

Fig. 8. The trend that is depicted here is the same as in the case of amplitude.

However, for the lowest value of the axial force the discrepancy between the modeling

methods (analytical � numerical) and the experimental analysis seems to be quite

substantial. For higher axial forces this discrepancy is lower and for the case of 2.3N

it seems that there is excellent agreement between these two methods. It is important

to mention at this point that for the numerical analysis the end rotation is measured

through the relative displacement of the ¯rst aluminum/bond line interface with

respect to the boundary condition (ux ¼ 0). However, using this method the shear

between the layers (although limited due to the small thickness of the structure) is

included in this measurement and thus the result is not pure rotation. Additionally

Table 6. Damping, Natural Frequencies and Bode amplitude for Numerical,
Analytical and Experimental analyses (� means that it has been extracted

from experimental results).

Axial force Quantity Analytical Numerical Experimental

0.8 An 22.00 20.20 19.35

!n 16.95 16.13 15.20

� � ¼ 28 0.05� 0.05

1.3N An 18.80 17.29 17.09
!n 15.62 14.50 13.80

� � ¼ 28 0.07� 0.07

1.8N An 14.30 14.28 14.25

!n 14.16 13.10 12.50

� � ¼ 28 0.10� 0.10

2.3N An 11.50 12.08 11.47
!n 12.53 11.20 10.60

� � ¼ 28 0.13� 0.13

(a) (b)

Fig. 8. End rotation plot for (a) Fa ¼ 0:8N, (b) Fa ¼ 1:3N, (c) Fa ¼ 1:8N and (d) Fa ¼ 2:3N.
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one should not forget that in the numerical and analytical analysis the structure is

assumed to be continuous with reduced °exural rigidity in order to simulate the

e®ect of the seams. However, in the experimental procedure this is not the case and

the structure has a discontinuity at the area of the seams. The reduced capacity of

(c) (d)

Fig. 8. (Continued)

(a) (b)

(c) (d)

Fig. 9. Phase lag plot for (a) Fa ¼ 0:8N, (b) Fa ¼ 1:3N, (c) Fa ¼ 1:8N and (d) Fa ¼ 2:3N.
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the structure at this point to carry the bending moment results in reduced °exural

bending at the supports and thus reduced end rotation.

Apart from the amplitude and end rotation bode plots, the corresponding plots for

the phase shifting are depicted for the various axial loads in Figs. 9(a)�9(d). The

system exhibits a second order behavior with phase shifting of 180� beyond the natural
frequency. In these graphs one can see that the phase shifting exists already even at

very low frequencies. At 1Hz, there is already a di®erence in the phase angle between

the four graphs that correspond to the di®erent compressive forces. For the experi-

mental analysis this can be attributed to the piezoelectric material hysteresis, while in

the case of the numerical analysis it can be attributed to the static prestress solution

that precedes the harmonic analysis. In the analytical results, these phenomena are not

included and the phase shift is purely related to the characteristics of the system.

7. Conclusions

The aim of the present work has been to introduce the analytical and numericalmodels

that are capable of predicting the dynamic performance of PBP actuators over a wide

range of the frequency domain. It has been clearly demonstrated that the normalized

amplitude of the PBP actuator drops with the increase of the axial force. This is the

case for the natural frequency of the actuator, while the damping ratio is substantially

increased. Obviously the phase lag is alternated as well. Analytical and numerical

models seem to grasp very well the dynamics of the PBP actuators over the studied

frequency range. The natural frequency shift has been evaluatedwith accuracy by both

types of models, while their validity has been con¯rmed by the experimental results on

a 230mm PBP actuator. The damping ratio extracted from the experimental proce-

dure has been introduced in the numerical model and it has been possible to predict

with high accuracy the normalized amplitude of the actuator. It seems also that the

damping ratio follows a quasi-linear behavior with respect to the axial load. More tests

with di®erent axial forces (in any case away from the critical buckling load to avoid

geometrical nonlinearity) could provide valuable data for the damping behavior with

respect to the applied axial force. In any case, it seems that the use of PBP actuators for

actuation applications that require dynamic performance is within their operational

envelope. However, it is also clear that the drop of the natural frequency dictates that

the designer has to trade bandwidth for de°ection.
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